

| Specification                                                                                                                                                                                                                                                                                   | TP                                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|
| Technical Properties for stock sizes                                                                                                                                                                                                                                                            | В 270 <sup>®</sup> і                       |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
| B 270 <sup>®</sup> i                                                                                                                                                                                                                                                                            |                                            |  |
| B $270^{8}$ i is a clear high transmission crown glass (modified soda-lime g                                                                                                                                                                                                                    | lass) available in form of sheets.         |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
|                                                                                                                                                                                                                                                                                                 |                                            |  |
| The subsequent properties are based primarily on the measuring resul measuring methods. These are defined in the corresponding "Measuring We retain the right to change the data in keeping with the latest technic Non-toleranced numerical values are reference values of a typical process." | ng and Test Procedures".<br>cal standards. |  |

Values marked with ◊ do not apply to the type of glass or no values are available.

Requirements deviating from these specifications must be defined in writing in a customer agreement.

Date of release: 21.12.2012



| Specification                        | TP                   |
|--------------------------------------|----------------------|
| Technical Properties for stock sizes | В 270 <sup>®</sup> і |

#### 1.0 **Thickness**

| nominal thicknesses [mm]* | permissible tolerance [mm] ** |
|---------------------------|-------------------------------|
| 0.90                      | ± 0.1                         |
| 1.00                      | ± 0.1                         |
| 1.10                      | ± 0.1                         |
| 1.35                      | ± 0.15                        |
| 1.65                      | ± 0.15                        |
| 1.85                      | ± 0.15                        |
| 2.00                      | ± 0.2                         |
| 2.30                      | ± 0.2                         |
| 2.50                      | ± 0.2                         |
| 3.00                      | ± 0.2                         |
| 3.50                      | ± 0.2                         |
| 4.00                      | ± 0.2                         |
| 4.50                      | ± 0.2                         |
| 5.00                      | ± 0.2                         |
| 5.50                      | ± 0.3                         |
| 6.00                      | ± 0.3                         |
| 6.50                      | ± 0.3                         |
| 7.00                      | ± 0.3                         |
| 8.00                      | ± 0.3                         |
| 10.00                     | ± 0.4                         |

<sup>\*</sup> other thickness on request\*\* closer tolerances on request



| Specification                        | TP                   |
|--------------------------------------|----------------------|
| Technical Properties for stock sizes | В 270 <sup>®</sup> і |

# Distribution of thickness / wedge

The thickness deviation is in mm/cm within a distance of 1 cm (measurement point intervals) specified.

| thickness [mm] | wedge [mm/cm] |
|----------------|---------------|
| 0.90 – 1.20    | 0.015         |
| 1.35 – 3.00    | 0.020         |
| 3.50 - 5.50    | 0.022         |
| 6.00 - 8.50    | 0.025         |
| > 8.50         | 0.035         |

### 2.0 Dimensions

| thickness [mm]         |                                            | length x width [mm]                        |
|------------------------|--------------------------------------------|--------------------------------------------|
|                        | stock sizes from<br>melting tank           | 1680 x 840 - 920<br>± 25                   |
| 0.90 – 4.00            | cut sizes                                  | 840 - 920 x 560<br>840 - 920 x 840<br>± 10 |
|                        | stock sizes from<br>melting tank           | 1680 x 860 - 920<br>± 25                   |
| 4.50 – 10.00 cut sizes | 860 - 920 x 560<br>860 - 920 x 840<br>± 10 |                                            |

Special dimensions upon request



| Specification                        | TP                   |
|--------------------------------------|----------------------|
| Technical Properties for stock sizes | В 270 <sup>®</sup> і |

| thickness [mm] |           | length x width [mm] |
|----------------|-----------|---------------------|
| 0.90 – 4.00    |           |                     |
| 4.50 – 10.00   | Cut sizes | 406 x 258<br>± 1    |

## 3.0 Rectangularity / Squareness

The deviation from rectangularity of the panel edge is ascertained in mm / m edge length.

- A maximum deviation of 10 mm/m is permissible.

# 4.0 Cut edge quality

Chips which occur as a result of cutting and handling are permissible in the whole of edge area. The size of the chips may not, exceed the thickness of the glass.

## 5.0 Warp

The maximum deviations of the glass surface from an ideal plane, referred to an area of  $320 \text{ mm} \times 320 \text{mm}$ .

| thickness (mm) | maximum deviation |
|----------------|-------------------|
| 0.90 - 8.00    | 0.48 mm           |
| > 8.00         | On request        |



| Specification                        | TP                   |
|--------------------------------------|----------------------|
| Technical Properties for stock sizes | В 270 <sup>®</sup> і |

### 6.0 Defects

In the glass melting process bubbles and inclusions cannot be avoided. The defect quantity and size distribution is depending on the glass schedule.

Knots which may cause breakage during transportation are not admissible.

### Permissible defects in stock sizes

Defects < 1.0 mm are not taken into account.

| thickness 0.90 – 10.0 mm |                               |        |                      |
|--------------------------|-------------------------------|--------|----------------------|
| area [mm]                | area [mm] defect >= 1 mm Σ le |        | max length per sheet |
| 406 x 258                | 5 pcs                         | 50 mm  | 20 mm per defect     |
| 840 - 880 x 560          | 7 pcs                         | 100 mm |                      |
| > 880 - 920 x 560        | 8 pcs                         | 100 mm |                      |
| 840 - 880 x 840          | 11 pcs                        | 100 mm | 100 mm per defect    |
| > 880 - 920 x 840        | 12 pcs                        | 100 mm | 100 mm per derect    |
| 1680 x 840 - 880         | 19 pcs                        | 100 mm |                      |
| 1680 x > 880 - 920       | 21 pcs                        | 100 mm |                      |

**Drawing stripes:** according as limit sample

# 7.0 Annealing quality

| thickness [mm] | birefringence (tension) |
|----------------|-------------------------|
| 0.90 - 3.00    | ≤ 30 nm/cm              |
| 3.50 - 6.00    | ≤ 40 nm/cm              |
| 6.50 - 10.00   | ≤ 60 nm/cm              |

VW 0050/3e

21.12.12 (1.Edition) page: 5